Biofeedback in Gameplay: How Valve Measures Physiology to Enhance Gaming Experience

Mike Ambinder, PhD
March 3rd, 2011
GDC
Goals of this Presentation

- Provide overview of biofeedback
- Discuss potential applications
- Use examples to show costs and benefits
- Discuss future directions and implications
Biofeedback Overview

- Biofeedback: measurement, display, analysis, modification, manipulation, and response of physiological signals
- Using biological indicators to index sentiment/emotion
Biofeedback Overview

- Feedback loop possible where subsequent signals depend on prior states
- Emotional states not stable
  - Transient
  - Volatile
  - Subject to manipulation
Physiological Response

Input to System

Output to Player

System Response
Why Biofeedback?

- Current control schemes
  - Provide one dimension of input
  - Map player intent to onscreen action
  - Ignore other aspects of cognition
  - Ignore player sentiment
Why Biofeedback?

- What about player sentiment?
- Adding emotional input incorporates new (and previously ignored) dimension of player input
- Tailor more immersive, dynamic, and calibrated game experience
BETTER!!!
Emotion

- Subjective, internal state induced by response to (usually) external events

- Vector
  - Magnitude (arousal)
  - Direction (valence)
Adapted from Lang (1995)
Physiological Signals

- Heart rate
- SCL (skin conductance level)
- Facial expressions
- Eye movements
- EEGs (Electroencephalography)
- Others (pupil dilation, body temperature, posture, etc.)
Heartrate

- Beat to beat interval of blood flow
- Measure baseline rate and deltas over time

http://en.wikipedia.org/wiki/Electrocardiography
Heart Rate

+ Index of arousal
+ Cheap
+ Easy to measure
+ Familiar
+ Fourier transform to get valence?

- Prone to movement artifacts
- Delayed onset to stimuli
- Difficult to determine valence
SCL

- Electrical resistance of the skin
- Chart waveform of arousal over time
- Get responsive and anticipatory spikes

http://www.tbiomed.com/content/2/1/11/figure/F5?highres=y
SCL

+ Index of arousal
+ Tonic/Phasic responses
+ Minimal lag to stimuli
+ Cheap
+ Robust to movement
+ Lots of measurement sites

- Difficult to associate eliciting events
- Difficult to determine valence
- Range is variable across subjects
Facial Expressions

- Record movement of facial muscles
- Classify emotion (both valence and arousal)
- Can be done remotely or via EMG
Facial Expressions

+ Index of valence
+ Index of arousal
+ Measures instantaneous responses

- Can be intrusive
- Expensive
  (at the moment)
- Subject to bias
- Requires training or a black box
Eye Movements

- Remote (or mounted) cameras measure reflectivity off of pupils
- Record where eyes are looking in real-time
- Get saccades (movements) and fixations

Eye Movements

- Index of attention
- Rudimentary index of thought
- Index of arousal (with pupil dilation)
- Unique
- Reliable

- Very expensive
- Requires extensive analysis
- Can be intrusive→ lead to subject biasing eye movements
EEGs

- Measure electrical potentials of the brain
- Primarily time-based signals
- Coarse measures of location
- Get frequency spectra and spike latency

http://www.bindcenter.eu/?page_id=12


http://news.tigerdirect.com/2008/02/28/put-on-your-thinking-cap-a-gaming-helmet-can-read-minds/
EEGs

- Index of arousal
- Index of valence
- Rudimentary insight into thought

- Very expensive
- Very intrusive
- Very noisy
- Difficult to validate
Others

- Pupil Dilation - arousal
- Body temperature - arousal
- Body posture - valence
  - Couple with pupil dilation to get frustration
- Lots of stuff we haven’t thought about
Potential Applications

- Passive viewing of biofeedback data
- Modify game experience based upon player sentiment/emotion/internal state
  - L4D director with biofeedback
  - Adaptive realtime difficulty adjustment
  - Detect and respond to disengaged players
- Determine optimal arousal patterns
  - Can manipulate gameplay to induce
Potential Applications

- Physiological data as direct input
  - Tie health to arousal
  - In-game prompts tied to emotional state
  - NPCs respond dynamically
  - Required valence/arousal to proceed
Potential Applications

- Matchmaking/Profiling
- Spectate competitive matches
- Multiplayer Mechanics
  - Detect teammate in trouble
  - Earn points for eliciting responses
- Playtesting
Current Experiments

- Modification of AI Director in Left 4 Dead 2
- Addition of physiological input to Alien Swarm
- Eye movements as active controls in Portal 2
Current Experiments

- Passive viewing of physiological inputs
  - Implications for multi-player
- Playtesting Applications
Modification of AI Director

- Director creates dynamic, variable experience in Left 4 Dead series
  - Modifies enemy spawns, health and weapon placement, boss appearances, etc.
- In-game encounters determined by estimated arousal level
Modification of AI Director

- Will replacing estimated arousal with actual arousal create a more enjoyable experience?
- Can we determine optimal arousal patterns?
Director Algorithm

- Represent Survivor intensity as single value
- Increase it in response to in-game trauma
- Decay intensity to zero over time
- Create peaks and valleys
Current Hardware Solution
Analysis of SCL Data

- Categorize game events
- Record survey responses
  - Enjoyment, frustration, etc.
- Quantify waveform
  - Spike frequency, size of range, average lag, etc.
- Data-mine (correlation, regression, frequency analysis, PCA, etc.)
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Value1</th>
<th>Value2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1290891060</td>
<td>player_biofeedback_scl</td>
<td>1.161238</td>
<td>228</td>
</tr>
<tr>
<td>1290891060</td>
<td>player_biofeedback_scl</td>
<td>1.161238</td>
<td>229</td>
</tr>
<tr>
<td>1290891061</td>
<td>item_pickup</td>
<td>63</td>
<td>first_aid_kit</td>
</tr>
<tr>
<td>1290891061</td>
<td>spawner_give_item</td>
<td>63</td>
<td>weapon_first_aid_kit</td>
</tr>
<tr>
<td>1290891061</td>
<td>player_use</td>
<td>63</td>
<td>407</td>
</tr>
<tr>
<td>1290891061</td>
<td>item_pickup</td>
<td>63</td>
<td>first_aid_kit</td>
</tr>
<tr>
<td>1290891061</td>
<td>spawner_give_item</td>
<td>63</td>
<td>weapon_first_aid_kit</td>
</tr>
<tr>
<td>1290891061</td>
<td>player_use</td>
<td>63</td>
<td>407</td>
</tr>
<tr>
<td>1290891061</td>
<td>player_biofeedback_scl</td>
<td>1.145869</td>
<td>230</td>
</tr>
<tr>
<td>1290891061</td>
<td>player_biofeedback_scl</td>
<td>1.156099</td>
<td>231</td>
</tr>
<tr>
<td>1290891061</td>
<td>player_biofeedback_scl</td>
<td>1.140777</td>
<td>232</td>
</tr>
<tr>
<td>1290891061</td>
<td>player_biofeedback_scl</td>
<td>1.156099</td>
<td>233</td>
</tr>
<tr>
<td>1290891061</td>
<td>item_pickup</td>
<td>65</td>
<td>first_aid_kit</td>
</tr>
<tr>
<td>1290891061</td>
<td>spawner_give_item</td>
<td>65</td>
<td>weapon_first_aid_kit</td>
</tr>
<tr>
<td>1290891061</td>
<td>player_use</td>
<td>65</td>
<td>406</td>
</tr>
<tr>
<td>1290891061</td>
<td>item_pickup</td>
<td>65</td>
<td>first_aid_kit</td>
</tr>
<tr>
<td>1290891061</td>
<td>spawner_give_item</td>
<td>65</td>
<td>weapon_first_aid_kit</td>
</tr>
<tr>
<td>1290891061</td>
<td>player_use</td>
<td>65</td>
<td>406</td>
</tr>
<tr>
<td>1290891061</td>
<td>player_biofeedback_scl</td>
<td>1.145869</td>
<td>234</td>
</tr>
<tr>
<td>1290891061</td>
<td>use_target</td>
<td>411</td>
<td>C_WeaponSpawn</td>
</tr>
</tbody>
</table>
3. Overall, I found today’s experience enjoyable.

1 2 3 4 5 6 7 8 9
(strongly disagree)
(strongly agree)

4. Overall, today’s experience was frustrating.

1 2 3 4 5 6 7 8 9
(strongly disagree)
(strongly agree)

5. Overall, today’s play session was challenging.

1 2 3 4 5 6 7 8 9
(strongly disagree)
(strongly agree)
How enjoyable was the playtesting session?

Survey ratings

Biofeedback contribution

How challenging was the playtesting session today?

Survey ratings

Biofeedback contribution
<table>
<thead>
<tr>
<th>SCLs</th>
<th>nSCR</th>
<th>Mean SCR</th>
<th>Std Spike Amp</th>
<th>Spike Amp Range</th>
<th>Min Spike Amp</th>
<th>Max Spike Amp</th>
<th>Mean Spike AreaSum</th>
<th>%Average excitement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question4</td>
<td>-0.10</td>
<td>-0.09</td>
<td>0.00</td>
<td>-0.07</td>
<td>-0.08</td>
<td>-0.07</td>
<td>0.07</td>
<td>%Average excitement</td>
</tr>
<tr>
<td>Question5</td>
<td>-0.09</td>
<td>0.25</td>
<td>0.15</td>
<td>0.22</td>
<td>-0.07</td>
<td>0.22</td>
<td>-0.22</td>
<td>%Average frustration</td>
</tr>
<tr>
<td>Question6</td>
<td>-0.39</td>
<td>-0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>-0.13</td>
<td>0.00</td>
<td>0.06</td>
<td>%Average challenge factor</td>
</tr>
</tbody>
</table>
Results

- Measured arousal produces greater enjoyment than estimated arousal
- Have rudimentary insight into events which elicit enjoyment
- Progress on optimal arousal patterns
Experiment Summary

- Physiological signals are viable inputs
- More work needed to ‘quantify’ enjoyment
- How well can we shape the arousal curve?
Alien Swarm + Biological Input

- Top-down, team-based action shooter
- Create mod with time-based constraint
  - Kill 100 enemies in 240 seconds
  - Timer indexed to arousal (SCL)
  - Highly aroused -> timer speeds up
  - Relax → timer reverts to baseline
Alien Swarm + Biological Input

- Can you create a compelling gameplay experience using physiological signals as direct input?
- What kind of problems will arise?
  - Feedback loop?
  - Possible manipulations of signal?
Problems

- Positive feedback loop exists
  - Increase in arousal leads to increase in arousal . . .
  - Decay factor helps
- Clarity of relationship between arousal and in-game events not always clear
Experiment Summary

- Novel gameplay experiences possible
- Experience qualitatively different
  - Aware of both gameplay and emotional response
- LOTS of work required to tweak algorithm
Play Portal 2 With Your Eyes

- Puzzle-based FPS
- Traditional control schemes use single control to shift viewpoint AND crosshair
- Decouple viewing and aiming
  - Use hand to move
  - Use eyes to aim
Play Portal 2 With Your Eyes

- Is it enjoyable to use your eyes to aim?
- How do you change gameplay if you add more degrees of freedom to aiming?
- Since the eyes move faster than the wrist, is speed of movement correlated with enjoyment?
Portal 2 Eyetracker Algorithm

- Use eyetracker to extract eye’s X,Y position
- Feed those coordinates into game engine
- Redraw cross-hair at current eye position
- Update at 60 Hz
Experiment Summary

- Eyes are viable aiming controllers
- Decoupling aiming/viewpoint is a plus
- Interesting question of how to use blinks?
- Best suited to more action-oriented games
- Consumer-grade eye trackgers are far away
Multiplayer

- Show representations of other player’s emotional state?
- Is it engaging to view vital signs of teammates/opponents?
- Is it a useful game mechanic?
  - Detect distress?
Multiplayer Summary

- Most enjoyable thing we’ve done so far
  - High sense of satisfaction when opponents spike
- Entertaining to view teammates response
  - Not useful (yet)
Playtesting Applications

- Create more objective responses
  - Lots of biases in current playtesting procedures
- Quantify responses
- Encourages rapid iteration on player state
Overall Summary

- Adding physiological signals opens up new dimensions of gameplay
- Novel control schemes worth exploring
- Consumer-grade devices to track both valence and emotion are needed
Future Directions

- Matchmaking on physiological profiles
- Experimentation with gameplay mechanics
- Quantify optimal arousal patterns
- Investigate other hardware platforms
- Incorporate techniques into playtesting
Acknowledgements

- Steve Bond
- Jeff Lin
- Mike Durand
- Charlie Burgin
- Jonathan Sutton
- Lars Jenvold
- Chandler Murch
Thanks!!!!

mikea@valvesoftware.com