Water Flow in PORTAL 2

Alex Vlachos, Valve
July 28, 2010
Outline

• Goals & Technical Constraints

• How Artists Create Flow Maps

• Flowing Normal Maps in Left 4 Dead 2

• Flowing Color Maps in Portal 2
Goals

• Visual
 – Solve repeating texture artifacts
 – Flow around obstacles
 – Vary water speed and bump strength

• Technical
 – Work with existing reflective surfaces
 – Min hardware ps2.0b (6-year-old hardware) & Xbox 360

• Gameplay...
Gameplay

• Early Left 4 Dead 2 playtests showed players were confused and got lost often in the swamps
 – Soft non-directional lighting
 – Trees provided too much cover
• My theory was that water flow would improve gameplay by highlighting the correct path
• We tested this theory through playtesting
• In practice, we found testers took 17% fewer wrong turns and decreased the time it took to traverse the level!
Technical Constraints

• Already at perf limits on the Xbox 360 & low-end PC

• Already at memory limits on the Xbox 360

• Our water shader had limited instructions left for our low end hardware ps2.0b
Algorithm Overview

• Pixel shader flow, not geometric flow
• Continue to use a normal map for water ripples
• Artists author a flow map (a texture containing 2D flow vectors)
• Use this flow map in a pixel shader to distort the normal map in the direction of flow
Flow Texture Mapped onto Surface

Covers entire water surface
Normal Map Mapped onto Surface

Tiled over the water surface
Artists Author Flow Maps

- Flow map provides a unique 2D vector for every point on the water surface
- Relatively low resolution: ~4 texels/meter
- Impractical to paint directly
- We use Houdini to create vector flow maps
Houdini – Importing Level Geometry
Houdini – “Combing” Vector Field
Houdini – Procedural Masks
Houdini – Applying Masks
Houdini – Water Normal Maps
Left 4 Dead 2

• Wanted to replace our scrolling normal maps with flowing normal maps

• Keep the rest of the water shader the same

• This algorithm ultimately provides a new per-pixel normal generated from the normal map and flow map
Related Work

• Building on aspects of their algorithm and applying their approach to flowing normal maps
Flow Visualization

• Inputs: flow field & noise texture

• Distort a noise texture to visualize a flow field

• The UV is offset by the 2D flow vector scaled by time
Flow Visualization Textures

Noise Texture

Flow Texture
Flow Visualization Experiment

Flow Texture
Max & Becker’s Observation

• The beginning of the distortion looks convincing

• Only distort a small amount

• In general, distortion looks reasonable for the first 1/3 of uv space
Smoothly Interpolating Layers

- Blend the short animated segment in two layers
- Each layer is offset half a phase so we can hide the restart for each layer
Smoothly Repeating Flow

Flow Texture
A Great Start

• We now have a method to flow a normal map

• We want to apply this to a larger surface

• But applying this to a large surface means tiling our normal map which will cause artifacts...
Portal 2 Test Map (Programmer Art)
Flow Vectors on Water Surface
Single Layer Normal Distortion
Double Layer Normal Distortion

Flow Vectors
Two Major Problems

• Repetition – The same normals will flow through the same point on the mesh

• Pulsing – The surface appears to pulse in a repeating pattern
Repetition Visualization Single Layer
Double Layer
Double Layer With Offset
Repetition Solved by Offset

Flow Vectors
Pulsing Solved by Noise
Pulsing Solved by Noise

Flow Vectors
Noise Texture
We scale down the strength of the normal in tangent space by the flow speed (Flow speed is the length of the 2D flow vector)
Performance

Compared to scrolling two normal maps:

• Additional texture fetches: 2 - flow & noise
• Additional arithmetic pixel shader instructions: 21
Water Flow in Portal 2

• Wanted to also flow debris in dirty water

• Needed to modify our algorithm to support flowing a color map
Debris Flow Example
Debris Flow Example
Debris Normal (Same as before)
Flowing Debris Using Same Algorithm
Flowing Normals

- Flowing normals would repeat an interval from zero to some fraction with the peak (center) of the interval at half distortion
Flowing Debris

- Flowing colors works better by offsetting the interval from \(-\text{fraction}\) to \(+\text{fraction}\) so the peak of the interval is at zero (the at-rest position)
Flowing Debris Using Offset
Debris Flow

Flow Vectors
Future Work

• Flow height maps and use tessellation hardware
• Multiple frequencies of normal maps
• Render dynamic flow vectors per-frame so animated objects cause flow changes
• Use flow map with our physics simulation to have objects flow on the water surface using the same data
Summary

• Use an artist-authored flow map
• Flow the normals in two layers and combine
• Use noise to reduce pulsing artifact
• Offset each phase of animation to reduce repetition
• Flowing debris uses an offset distortion range that favors less distortion than the normal flow
Thank You!

Water textures created by Alireza Razmpoosh

Alex Vlachos, Valve
alex@valvesoftware.com